Hermione in wonderland.

Took her outside this morning, and the safety test without LiPo consistently threw I²C errors as yesterday.  I brought her straight indoors, still powered up, both her and my piPad and ran the same test; she worked perfectly. Curiouser and curiouser.


P.S. Shortly after writing the above, I had a eureka moment in the shower: I remembered reading LiPos don’t work well in the cold, and even the Mavic instructions suggest letting it run for a while before take off to let the battery chemistry warm out.  Next test then is to wrap both LiPos (batter bank and the main power) in bubble wrap, boot her up indoors, and then take her outside to fly.  I’ll report back here anon.


P.P.S. It worked!!!!! I wrapped both LiPos in some neoprene foam (normally used for scuba suits), set everything up and running the code and therefore the GLL and PWM to keep the LiPos warm indoors. After a couple of minutes, I lugged everything outside, and she did two flights without a glitch. Roll on spring / summer!

Doesn’t bode well

I’ve been tinkering with the existing PCB layout (shown below) to see if power supply changes fix the Garmin LiDAR Lite (GLL) I²C interference.

Hermione's closeup

Hermione’s closeup

I’ve basically removed the black cuboid 1.5A 5V switching power regulator using the space instead to add a 680uF electrolytic capacitor between 5V and ground near the GLL as specified in the docs.  I then powered her up directly via the PCB, rather than indirectly via the RPi micro USB 5V output GPIO pin.  I used a lab power supply which can handle up to 5A.

Hermione showed identical I²C errors with the GLL plugged in, even if not used.  The PSU showed only 0.45mA at boot, 0.5mA with Hermione’s code running passively, and about 0.6A while she was ‘flying’.  This strongly suggests the new PCB won’t solve the problem either.  I am running out of fingers to cross 🙁

The option of using the GLL PWM output is still open, but I’m not keen to swap over to using the pigpio library this requires as it uses a daemon process in the background, unlike RPi.GPIO and RPIO which both directly access the /dev/gpio devices.  I wonder how hard it would be to write my own PWM C library with python wrapper to epoll the GLL PWM pin?  It would require a new PCB revision as would pigpio so there’s a PITA there too.  For some reason, probably because this all just works on Zoe, I still want to keep banging my head to solve the I²C problems.

9 flights

For the record, here’s 9 sequential flights, with each lasting 10s: 3s ascent at 0.3m/s, 4s hoverand 3s descent at 0.3m/s.  The drift is different in each.  There are actually only 8 flights in the video; the 9th is not in the video: she never took off and lost WiFi so I had to unplug her and take her indoors.  I may post it tomorrow, though it mostly consists of me grumbling quiets while I pick her up with my arse facing the camera!

Hermione had Garmin and RaspiCam disabled – videoing the ground for lateral tracking is pointless if the height is not accurately known.

On the plus side, the new foam balls did an amazingly successful job of softening some quite high falls.

End of the line?

Status:

  • Zoe works as best as she can, but she doesn’t have the performance to run the video above 480 x 480 pixels at 20 fps.  This means lateral motion over the IKEA play mat works, but not on the gravel on the drive, never mind the grass.  I have found a micro-USB GPS dongle which I may add but I’ve yet to find a micro-USB hub to allow power, WiFi and GPS to go into the single micro USB port (the other is blocked by the frame)
  • Hermione can process video macro-blocks at 640 x 640 pixels @ 20 fps (and perhaps higher) which may be enough for the gravel drive, but I’m completely out of ideas for the source of the I²C errors from the Garmin LiDAR-Lite V3 when it is connected even if it’s not run.

I’ll continue working on the I²C to the end of the month, but after that I’ll be downing drone development and move on to other things, probably still Pi related nonetheless.

Garmin LiDAR-Lite interrupts

Here’s what I’ve captured from my scope.

LiDAR interrupts

LiDAR interrupts

It’s mostly at 2.5V with 3.3V peaks at 50ms or 20Hz corresponding to the LiDAR sampling frequency.

So the interrupt is kind of working, except the GPIO pull down is not ‘hard enough to get the 2.5V down to 0V.  Because of that, the GPIO rising edge code isn’t capturing these tiny interrupt peaks.

This suggests the LiDAR output isn’t floating as the spec implies, but has a pull-up which is lower resistance than the GPIO pull down resistor.  Seems I need to add an explicit pull-down resistor to aid the GPIO pull-down internal resistor.  Time to find out what that is.


P.S. The internal GPIO pull up/down resistor is apparently 50k, and a quick calculation suggests that means the Garmin pull-up is about 17k – this results in the base-level 2.5V shown above. So I added a 10k between the interrupt and ground, as this would bring the ‘floating’ voltage to less than 50% and hopefully enough to allow the GPIO pull up/down to work. But it didn’t, it dragged everything down to near zero (including the spikes), so I removed it, but the spikes shown above had vanished, suggesting the 10k may have broken something. The Garmin is still producing height values luckily. Annoyingly, it had no effect on the I2C errors. I’m running out of ideas of what’s causing these. 🙁

Back on the wagon

I’ve flown my Mavic probably for 20 minutes over the course of 5 short flights simply to get familiar with the controls while dodging the rain showers of the last couple of days.  I’m back inside again trying to track down why Hermione has started throwing her I²C wobbly again.

Motion processing is working well, keeping processing close to the minimum 100Hz regardless of other sensor inputs – here 156 samples were processed in 1.724s.

Processing rate

Processing rate

Garmin’s height is running stably at the intended 20Hz and it’s well withing the accuracy possible for distances less than 1m

Garmin LiDAR v3

Garmin LiDAR v3

Here’s the problem though: the IMU is fine for 862 samples averaged into the 155 motion processing blocks, showing just gravity as Hermione sits on the ground, but suddenly the IMU values spike for no reason for the 156 sample average.  Note that this happens only when the Garmin is plugged in.  There are in fact two spikes: the first is shown, the second causes an I/O exception and the diagnostics are dumped:

IMU stats

IMU stats

I’ve tried power supplies up to 3.4A, both battery and mains powered; I’ve resoldered various critical PCB joins; I’ve added the 680uF capacitor as the Garmin spec suggests despite Zoe being fine without it, and I’ve used a newly flashed SD card, all to no avail.

I have two things left to try:

  • currently the Garmin is read every motion processing loop, despite being updated at 20Hz; the spec says there’s an interrupt, but as yet, I’ve not got it to work.  Must try harder!
  • Failing that, I’ll have to replace the MPU-9250 with another, and see if the current one is faulty.

Beyond these two, I’m out for ideas.

The GPS + compass plan

My intent with GPS and compass it that Hermione flies from an arbitrary take-off location to a predetermined target GPS location, oriented in the direction she’s flying.

Breaking that down into a little more detail.

  • Turn Hermione on and calibrate the compass, and wait for enough GPS satellites to be acquired.
  • Carry her to the destination landing point and capture the GPS coordinated, saving them to file.
  • Move to a random place in the open flying area and kick off the flight.
  • Before take-off, acquire the GPS coordinates of the starting point, and from that and the target coordinates, get the 3D flight direction vector
  • On takeoff, climb to 1m, and while hovering, yaw to point in the direction of the destination target vector using the compass as the only tool to give a N(X), W(Y), Up(Z) orientation vector – some account needs to be taken for magnetic north (compass) vs. true north (GPS)
  • Once done, fly towards the target, always pointing in the way she’s flying (i.e. yaw target is linked to velocity sensor input), current GPS position changing during the flight always realigning the direction target vector to the destination position.
  • On arrival at the target GPS location, she hovers for a second (i.e. braking) and decends.

There’s a lot of detail hidden in the summary above, not least the fact that GPS provides yet another feed for 3D distance and velocity vectors to be fused with the accelerometer / PiCamera / LiDAR, so I’m going to have to go through it step by step

The first is to fly a square again, but with her oriented to the next direction at the hover, and once moving to the next corner, have yaw follow the direction of movement.  Next comes compass calibration, and flight plan based upon magnetic north west and up.

However, someone’s invoked Murphy’s / Sod’s law on me again: Hermione is seeing the I2C errors again despite no hardware or software changes in this area.  Zoe is behaving better, and I’m trying to double the motion tracking by doubling the video frame rate / sampling rate for the Garmin LiDAR-Lite; the rate change is working for both, but the LiDAR readings see to be duff, reading 60cm when the flight height is less than 10cm.  Grr 🙁

One last sanity check

Before moving on to compass and GPS usage, there’s one last step I want to ensure works: lateral movement.

The flight plan is defined thus:

  • take-off in the center of a square flight plan to about 1m height
  • move left by 50cm
  • move forward by 50cm – this place her in to top left corner of the square
  • move right by 1m
  • move back by 1m
  • move left by 1m
  • move forwards by 50cm
  • move right by 50cm
  • land back at the take-off point.

The result’s not perfect despite running the ground facing camera at 640 x 640 pixels; to be honest, with lawn underneath her, I still think she did pretty well.  She’s still a little lurchy, but I think some pitch / roll rotation PID tuning over the IKEA mat should resolve this quickly.  Once again, you judge whether she achieved this 34 second flight well enough?

She cannae take any more, Captain!

Zoe is now maxed out;  any increased video frame size above the current 400 x 400 pixels at 10 fps leads to a IMU FIFO overflow i.e. the video processing simply takes too long.  She’s also run out of physical space on her frame for more sensors.

On the other hand, Hermione has loads of physical space, but is plagued with I2C problems on her A+.

To add GPS for flight plans, and Scanse Sweep for object avoidance, I need more cores.  For the moment that means a B2 or B3.  Currently I’m leaning towards a B2 as I don’t need the 64 bit kernel of the B3, nor the built in WiFi or Bluetooth – I’d rather continue to use a faster WiFi USB dongle.  With the extra cores, I can move the video processing out of the motion processing into a different process, and have it feed the latest values to the motion processing when available.  Hopefully that will mean support for higher video frame size and rate and perhaps also increase the IMU sampling rate back to the 1kHz – I’ve had to reduce it to 500Hz currently.  Having the extra cores and 4 USB ports means GPS and Scanse Sweep should be much easier to add – I doubt the A3 (if it ever appears) will support those extra USB ports.

So it’s a B2.  For the sake of up to date build instructions, I’ll be installing her from scratch and blogging the instructions once complete.

 

On a cold winter’s morning…


Both flights use identical code.  There are two tweaks compared to the previous videos:

  1. I’ve reduced the gyro rate PID P gain from 25 to 20 which has hugely increased the stability
  2. Zoe is using my refined algorithm for picking out the peaks in the macro-block frames – I think this is working better but there’s one further refinement I can make which should make it better yet.

I’d have liked to show Hermione doing the same, but for some reason she’s getting FIFO overflows.  My best guess is that her A+ overclocked to turbo (1GHz CPU) isn’t as fast as a Zero’s default setting of 1GHz – no idea why.  My first attempt on this has been improved scheduling by splitting the macro-block vectors processing into two phases:

  1. build up the dictionary of the set of macro-blocks
  2. processing the dictionary to identify the peaks.

Zoe does this in one fell swoop; Hermione schedules each independently, checking in between that the FIFO hasn’t filled up to a significant level, and if it has, deal with that first.  This isn’t quite working yet in passive test, even on Zoe, and I can’t find out why!  More anon.