I’ve finally got the FIFO buffer code working with lots of protection against overflow, and also using a guaranteed way to ensure the code and FIFO are always synchronised.  It works perfectly, so I’ve updated the code on GitHub

Then I took Zoe and Phoebe about; with the floppy props Zoe flew OK but not as well as usual and, as usual, neither would fly at all with the CF props.  Some stats revealed unsurprisingly that it’s Z-axis noise from the props;  Zoe’s floppy props aren’t so floppy at freezing temperatures but when I brought her indoors, she was fine again.

The problem is the motors / props can’t react fast enough to sharp spikes in acceleration, so drift ensues – in this case downwards vertical drift keeping them both pinned to the ground when the sensors felt the spikes.  I need to find a way to soften those acceleration spikes such that the net integrated velocity is the same, and the motors can react to it.

There’s a couple of approaches I can take here, and as usual, I’ll be trying both.

The first is to add additional foam buffering between the HoG and the frame to soften the blows just like Zoe’s floppy props do.  The second is to tweak the vertical velocity PID gains to be dominated by the I-gain and reduce the P-gain significantly.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.